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Abstract

Theoretical analysis of high frequency vibrations is indispensable in a variety of engineering designs. Much effort has
been made on this subject in the past few decades. However, there is no single technique which can be applied with
confidence to various engineering structures for high frequency predictions at present. This paper introduces a novel
computational approach, the discrete singular convolution (DSC) algorithm, for high frequency vibration analysis of
plate structures. Square plates with six distinct boundary conditions are considered. To validate the proposed method, a
completely independent approach, the Levy method, is employed to provide exact solutions for a comparison. The
proposed method is also validated by convergence studies. We demonstrate the ability of the DSC algorithm for high
frequency vibration analysis by providing extremely accurate frequency parameters for plates vibrating in the first 5000
modes. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Plates; High order modes; High frequency vibration; Wavelets; Discrete singular convolution

1. Introduction

In modern industry and scientific applications, both ordered and random high frequency motions are
frequently encountered. For example, the frequency of magic angle spin in a solid nuclear magnetic reso-
nance spectroscopy is about 40 kHz. The turbulence combustion field of a space shutter or a jet fighter
engine contains very high frequency (color) noise components. As a result, many man-made structures,
such as aircraft, jet, satellite, computer hard disc, and mobile phone are subjected to various high frequency
excitations. To avoid mechanical resonance and fatigue damage in engineering designs, it is crucial to
predict and understand the mechanical responses of a man-made structure subject to high frequency vi-
bration and noise. The most commonly used approaches of high frequency analysis include hierarchical
finite element method (HFEM) (Langley and Bardell, 1998), dynamic stiffness (continuous element) method
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(Wang and Kinsman, 1971; Banerjee and Williams, 1994), Levy method (Xiang et al., 1996), periodic
structure approximation (Mester and Benaroya, 1995; Mead, 1996), statistical energy analysis (Lyon, 1975;
Keane and Price, 1987) and wave intensity analysis (Langley and Khumbah, 1995). Among these methods,
the last three approaches treat the original physical system in a manner which might not necessarily be the
same as the exact mechanical analysis. For example, periodic structure theory assumes an idealized peri-
odicity which is indeed very efficient for handling many real-world structures. Statistical energy analysis
does not attempt to predict detailed high frequency modes. Instead, it provides the spatial frequency dis-
tribution of a structure. Such information is valuable for estimating the frequency response of a structure
under external noise. As a generalization of the statistical energy analysis, wave intensity analysis does not
assume a diffusive vibration wave field. In contrast, other three approaches, i.e., the HFEM, dynamic
stiffness method and Levy method, attempt to solve the original integral equations and/or differential
equations which are derived from the established principles of applied mechanics. In particular, dynamical
stiffness method has been extensively used for one-dimensional structural analysis with success. When
applied to a complex two-dimensional structure, the method essentially treats an idealized structure. The
Levy method is capable of providing closed-form solutions for rectangular plates that have at least two
parallel edges simply supported. The full solution of arbitrary accuracy can be obtained by sufficient
number of iterations. Recently, Beslin and Nicolas proposed an HFEM (Beslin and Nicolas, 1997) to re-
duce the well-known numerical instability of the conventional p-version finite element method due to
computer’s round-off errors. The p-version finite element method utilizes a degree p of the basis functions
which are conventionally chosen either as polynomial sets such as integrated Legendre polynomials, Jacobi
polynomials, or as the Taylor basis {x"}. For a relatively large p, the high numerical dynamics of these
polynomial coefficients causes computer’s round-off errors and leads to ill-conditioned mass and stiffness
matrices. The HFEM proposed by Beslin and Nicolas uses a trigonometric set {¢(x)} of the form

¢, (x) =sin(a,x + b,)sin(e,x +d.), r=1,2,... (1)

as basis functions. Here coefficients a,, b,, ¢, and d, are chosen appropriately (Beslin and Nicolas, 1997) to
satisfy the boundary conditions of a plate. Remarkably, such an HFEM works much better than the hi-
erarchical FEM of Bardell (1991) for high frequency analysis and was devised to predict the 850th mode for
an all edge simply supported rectangular plate and the 820th mode for an all edge free plate with errors
being less than 2%. However, due to numerical instability, it is still very difficult for the HFEM to pursue
beyond vibration modes of the order of a thousand (Beslin and Nicolas, 1997). Moreover, the accuracy of
the HFEM for lower modes is quite low. Therefore, despite much effort in the past few decades, unfor-
tunately, there is no single technique which can be applied with confidence to high frequency vibration
analysis (Langley and Bardell, 1998) at present. The reader is referred to Langley and Bardell (1998) for an
elegant review on this subject.

More recently, the discrete singular convolution (DSC) algorithm (Wei, 1999a, 2000a,b) has emerged as
a potential approach for the computer realization of singular integrations. Sequences of approximations to
the singular kernels of Hilbert type, Abel type and delta type were constructed. The mathematical foun-
dation of the DSC algorithm is the theory of distributions (Schwartz, 1951) and the theory of wavelets.
Numerical solutions to differential equations are formulated via the singular kernels of delta type. For the
purpose of numerical computations, both bandlimited reproducing kernels and approximate reproducing
kernels are discussed as sequences of approximations to the universal reproducing kernel, the delta distri-
bution. By appropriately selecting parameters in a DSC kernel, the DSC approach exhibits controllable
accuracy for integration and shows excellent flexibility in handling complex geometries and boundary
conditions. It was demonstrated (Wei, 2000a) that different implementations of the DSC algorithm, such as
global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. Thus,
the DSC algorithm provides a unified representation to these numerical methods. Practical applications
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were examined for the numerical solution of the Fokker—Planck equation (Wei, 1999a, 2000a) and for the
Schrodinger equation (Wei, 2000c). Another development in the application of the DSC algorithm is its
use in computing numerical solutions of the Navier-Stokes equation with both regular (Wei, 2001a) and
irregular geometries (Wan et al., in press). In the context of image processing, DSC kernels were used to
facilitate a new anisotropic diffusion operator for image restoration from noise (Wei, 1999b). Most recently,
the DSC algorithm was used to integrate the Cahn-Hilliard equation in a circular domain (Guan et al.,
2001) and the sine-Gordon equation with the initial values close to a homoclinic manifold singularity (Wei,
2000d), for which conventional local methods encounter great difficulties and result in numerically induced
chaos (Ablowitz et al., 1996). The work most relevant to the present study is the use of DSC for plate (Wei,
1999c¢, 2001b) and beam (Wei, 2001¢) analyses. The DSC algorithm was utilized to provide the first 100
modes of a simply supported square plate with at least 11 significant figures (Wei, 1999¢, 2001b). We il-
lustrated that the DSC provides excellent results for plates with internal line supports (Wei et al., in press),
complex internal supports (Xiang et al., in press) and irregular internal supports (Zhao et al., in press).

The objective of the present paper is to introduce the DSC algorithm for high frequency vibration
analysis of plates. To validate the present DSC results, closed-form solutions are generated by using a
completely independent approach, the Levy method, for cross-validations. The validity and accuracy of the
DSC method for higher-mode vibration analysis of plates are verified by convergence studies and a
comparison with the Levy solutions. Extensive frequency parameters are tabulated for square plates of six
distinct edge support conditions obtained as a combination of simply supported and clamped edges. We
demonstrate that the DSC approach is able to provide extremely accurate vibration modes of the order of a
few thousands without encountering any difficulty of numerical instability. In fact, the true potential of the
DSC algorithm for the prediction of high frequency vibration is unknown to us at the moment. It seems to
be limited only by computer memory and CPU time.

The organization of the paper is as follows. Theory and algorithm for plate analysis are given in Section
2. For the sake of integrity, we briefly review the computational philosophy of the DSC algorithm and the
Levy method. Numerical experiments are presented in Section 3 by using both the DSC and Levy methods.
Case studies are performed on various combinations of different boundary conditions. This paper ends with
a conclusion.

2. Theory and algorithm

The problem of plate vibration with different boundary conditions is described. For integrity and
convenience, both the DSC and Levy methods are briefly reviewed in this section. However, the reader is
referred to the original work for more details (Wei, 1999a). The analysis of plates by both methods is
presented.

2.1. Theory of plates

Although we limit our attention to the vibration of rectangular (classic) Kirchhoff plates with simply
supported and clamped edges, the method can be used for many other applications in solid mechanics.
Let us consider a rectangular plate of length @, width b, thickness 4, mass density p, modulus of elasticity E,
and Poisson’s ratio v. The origin of the Cartesian coordinates (x, y) is set at the lower left corner of the
plate. The governing differential equation for the plate is given by (Timoshenko and Woinowsky-Krieger,
1970)

o*w o'w  'w  pho?

Y tor - DY (2)
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where w(x, ) is the transverse displacement of the midsurface of the plate, D = Eh*/[12(1 — v*)] the flexural
rigidity, and w the circular frequency. We consider one of the following two types of support conditions for
each plate edge:

For simply supported edge (S):

*w *w
W—O, —D<W+V¥) =0. (3)
For clamped edge (C):
ow
= _ = 4
w=0, =0, @

where n and s denote, respectively, the normal and tangential coordinates with respect to the considered edge.

It is pointed out that the thin plate theory used in this study may not be strictly valid in predicting the
very high frequency vibration of real plates. In particular, if a plate vibrates in very high frequency, the
wavelength of a vibration mode may be comparable to or even smaller than the thickness dimension of
the plate. In such a case, rotary inertia and transverse shear deformation may have significant influence on
the vibration behavior of the plate. A better approximation can be achieved by employing either the first-
order plate theory (the Mindlin plate theory (Mindlin, 1951)), the higher-order plate theory (the Reddy
plate theory (Reddy, 1984)) or the three-dimensional (3D) theory for elasticity. Nevertheless, the objective
of this paper is to demonstrate the ability of the DSC algorithm in dealing with high frequency vibrations.
It is believed that the DSC approach for high frequency analysis introduced in the present work can be
easily adopted for solving problems based on other structural theories.

It is well known that high frequency vibrations are very sensitive to boundary conditions, structural
geometries, and geometrical and material imperfections. The treatment of different boundary conditions are
presented in the present study. The use of the DSC algorithm for complex geometries is studied for in-
compressible flow (Wan et al., in press) and is under consideration for structural analysis. The geometrical
and material imperfections might be modeled by improved plate theories, whose governing equations can
be solved similarly by using the proposed DSC algorithm.

2.2. Discrete singular convolution

Singular convolutions are essential to many science and engineering problems, such as electromagnetics,
Hilbert transform, Abel and Radon transforms. DSC is a general approach for the numerical realization of
singular convolutions. By appropriate construction or approximation of a singular kernel, the DSC can be
an extremely efficient, accurate and reliable algorithm for practical applications (Wei, 1999a).

It is very convenient to discuss singular convolution in the context of distributions. We denote 7 a
distribution and #(¢) an element of the space of test functions. A singular convolution can be expressed as

FQ%:[%TU—ﬂM@dx (5)

Here T(¢t — x) is a singular kernel. Depending on the form of the kernel 7, the singular convolution is the
central issue for many science and engineering problems. For example, singular kernels of the Hilbert type
have a general form of

n@:% (n > 0). (6)

Here, kernels T(x) = 1/x* (0 < @ < 1) define the Abel transform which is closely connected with a gener-
alization of the tautochrone problem. Kernel 7(x) = 1/x commonly occurs in theory of linear response,
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signal processing, theory of analytic functions, and the Hilbert transform. Its 3D version is important to the
theory of electromagnetics. 7(x) = 1/x? is the kernel used in tomography. Other interesting examples are
singular kernels of the delta type

Tx)=0"(x) (n=0,1,2,...). (7)

Here, kernel T(x) = d(x) is important for interpolation of surfaces and curves; and T'(x) = 6" (x) (n =
1,2,...) are essential for numerically solving differential equations. However, a common feature of
these kernels is that they are singular, i.e. they cannot be directly digitized in computers. In this regard,
the singular convolution, Eq. (5), is of little numerical merit. To avoid the difficulty of using singu-
lar expressions directly in computers, sequences of approximations (7,) of the distribution 7 can be con-
structed
lim 7,(x) — T(x), (8)
o—
where o is a generalized limit. Obviously, in the case of 7'(x) = d6(x), the sequence, T,(x), is a delta sequence.
Furthermore, with a good approximation, it makes sense to consider a discrete version

(1) = 3 Tt —x)f (x), ©)

where F,(¢) is an approximation to F(¢) and {x;} is an appropriate set of discrete points on which the
discrete convolution (9) is well defined. It is this discrete expression that makes a computer realization
possible. Note that, the original test function #(x) has been replaced by f(x). The mathematical property or
requirement of f(x) is determined by the approximate kernel 7,. In general, the convolution is required
being Lebesgue integrable.

It is helpful to illustrate the algorithm by examples. A simple example is Shannon’s wavelet kernel,
sin ox/7x. Shannon’s wavelet kernels are a delta sequence and thus provide an approximation to the delta
distribution

i (22, 15)) = (0. (10)

o—00 X

Other important examples include the Dirichlet kernel
sin [(1+4)(x —x')]

2msin [1(x —x')] (11)
the modified Dirichlet kernel
sin [(1+1)(x —x')] 12)
2ntan |1 (x — x')]
and the de la Vallée Poussin kernel
1 cos[a(x —x')] — coi[Zoc(x —x')] . (13)

o (x —x)

For sequences of the delta type, an interpolating (or quasi-interpolating) algorithm sampling at Nyquist
frequency, o = 1/ 4, has great advantage over a non-interpolating discretization. Therefore, the Shannon’s
wavelet kernel is discretized as

sinfa(x —x')]  sinZ(x — x;)
m(x — x') 2 (o —xx)

(14)
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In fact, not only the interpolating (or quasi-interpolating) nature guarantees the highest accuracy on the set
of grid points, but also it provides the highest possible computational efficiency of a grid. This is because the
Nyquist interval given by [—7/4, /4] is the largest possible sampling interval that is free of alias whenever
an L? function f(x) under study satisfies the Nyquist condition

A nom
supp/ (k) € { = 2.2 }. (15)
This fact can be formally addressed by Shannon’s sampling theorem
sm —Xz)
. 16
k;;f X/() (16)

The significance of Shannon’s sampling theorem is that by a discrete, but infinite set of sampling data,
{f (xt)}, one can actually recover a bandlimited L? function on a real line. Such bandlimited L? functions are
known as elements of the Paley—Wiener reproducing kernel Hilbert space. The discrete Shannon’s kernels,
{(sinZ(x —x))/(3(x —xi)) },.,» are a complete set of sampling basis. Shannon’s sampling theorem has
great impact on information theory, signal and image processing because the Fourier transform of
Shannon’s wavelet kernel is an ideal low-pass filter for signals bandlimited to [—n/4,7/4].
It is noted that the sequence of approximation can be improved by a regularizer (Wei, 1999a)
rlirglcR(,(x) =1 (17)
The regularizer is designed to increase the regularity of convolution kernels. For the delta sequence, it
follows from Eq. (8) that

/ lim T,(x)R,(x)dx = R,(0) = 1, (18)
a0l

where R,(0) =1 is the special requirement for a delta regularizer. A typical delta regularizer used in this
work and elsewhere (Wei, 1999a) is exp(—x?/20¢2). Therefore, Shannon’s kernel is regularized as

(o) NG TR) (( w20%) e

2 (x —x) Z(x—xk)

Since exp(—x?/20?) is a Schwartz class function, it makes the regularized kernel applicable to tempered
distributions. Numerically, the regularized expression performs much better than Shannon’s wavelet kernel
for being used in a local approach for solving partial differential equations. Qian and Wei (submitted) have
recently given a rigorous error estimation of the regularized formulae.

The uniform, Nyquist rate, interpolating discretization and the regularization are also adopted for the
Dirichlet kernel:

sin [(1+3)(x —x/)] . sin (% (x — x;)) (_ (x—xk)2>
2msin [ (x — x/)] (2L+1)sm(z ZLH) 2 e (20)

In comparison to Shannon’s kernel, the Dirichlet kernel has one more parameter L which can be optimized
to achieve better results in computations. Usually, we set a sufficiently large L for various numerical ap-
plications. Obviously, the Dirichlet kernel converts to Shannon’s kernel at the limit of L — oo. The uniform
interpolating discretization and the regularization will also be used for the modified Dirichlet kernel

sin [(1+3)(x=¥)] | sin (§(x =) <_<x—xk>2> 2
2ntan [§(x —x')] (2L+1)tan(j" )exp 207 ’ 2

Xk
2L+1
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and for the de la Vallée Poussin kernel

i COS[O(()C _ x’)] _ COS[20£()C _ x/)] . % cos% (x - xk) - 00522—7Z (x — xk) exp < . M) (22)

oL (x —x')° 3 {%(x _xk):|2 202

where A = %A. Since m/4 is proportional to the highest frequency which can be reached in the Fourier
representation, the A4 should be very small for a given problem involving highly oscillatory functions or very
high frequency components.

We use a truncated singular kernel, which is symmetric or antisymmetric,

SO~ Y S —x)f () (n=0,1,2,..), (23)

where 2M + 1 is the computational bandwidth, or effective kernel support, which is usually smaller than the
whole computational domain, [a, b]. Here 6" (x — x;) is a collective symbol for the nth derivative of any of
the right-hand side of Eqgs. (19)—(22). The differentiations in Eq. (23) can be easily carried out for a given
84q(x —x). For example, if dz,(x —x;) = (sinZ(x — x;)) /(% (x — x;)) exp(—(x — x,)°/(20?)), we have for
X # X

5%2()(_)5,{) — cos i (r — xi) exp (_ (x—xk)2> _sing (x —xx) exp (_ (x—xk)2>

(x —xz) 202 I(x —x;)’ 202

—%%exp(—%), (24)
e = B o () e o ()

) cosZ E:Z— xz) exp < B (x ;;;k)2> o si;é(i ;k;k) exp ( B (x ;;;;Jz)

n ?25(957);)’:2) exp < & ;(;k)z> N Sinﬁg();: Xz) (x — x;) exp ( - %) . (29)
s = BRI g (L0 BRI e (2T )

R (T ) e ()

e N

B 6sin§(x—x:) exp (_ (xxk)2> B 3sin§(x—2xk) exp (_ (xxk)2>

4 (x —xp) 20 (x—x)70? 20°

T 6 2
yid 20

_emm)sing (- x) exp <‘ M> .
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and
2 T 2 B i T 2
@, A2 cos % (x — xi) (=) 75 sin g (x — xi) _(r—x)
5%0()6 x) = (x —x4)° exp 20? + (x — xx) xp 262
7 n 2 2
25 cos % (x — xy) (=) Zsin % (x —x;) C(r—x)
+ 4—(72 exp T 127()C - xk)3 exp T
—6% sinZ (x — x;) exp _(X—xk)2 _6§(x—xk)sin§(x—xk)
(x — x;)0? 24?2 a*
2 Tl
« exp cos ick) exp [ — (x —);k) _1p%08% (x 2xk)
(x— xk) 20 (x — x;) 02
X exp — xk (x — xx) CO: Z(x —xi) exp [ - (x — zk)Z o sinZ (x — xsk)
ag 20 %(x — xk)
s1n sin§ (x —x;) (x —x)’ sinZ (x — xy)
X €x ex +3
p ( ) x—xk) o2 P ( 202 % (x — x¢ )0t
« ex x—xk x—xk sin % (x — x;) oo [ (x — x.)?
b 0'6 P 2072
(x —x)° sin % (x — x;) = %)
+ 208 exp 202 | (27)
At x = xy, it is convenient to evaluate these derivatives separately
34(0) =0, (28)
134247
32(0) = —3 =20, (29)
32(0) =0 (30)
and
115410562 + %4 gt
(4) Ve A4
5%( =3 g . (31)

Qian and Wei (submitted) have recently provided a mathematical estimation for the choice of M, ¢ and
A. For example, if the L, error for approximating an L? function f is set to 107" (5 > 0), the following
relations are to be satisfied

r(n — BA4) > \/4.61y and % > 1/4.61n, (32)
r

where » = /4 and B is the frequency bound for the function of interest, f. The first inequality states that
for a given grid size 4, a large r is required for approximating high frequency component of an L? function.
The second inequality indicates that if one chooses the ratio » = 3, then the half bandwidth M ~ 30 can be
used to ensure the highest accuracy in a double precision computation ( = 15). This theoretical estimation
is in very good agreement with a previous numerical test (Wei, 2000b).
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2.3. Vibration analysis of plates by using the discrete singular convolution

Consider a general operator ¢ having a differential part & and a function part F
O=2+F. (33)

In the DSC approach, it is convenient to choose a grid representation for the coordinate so that the
function part F of the operator is diagonal. Hence, its discretization is simply given by a direct interpolation
on the grid

F(x) — F(x¢)Om- (34)

The differential part of the operator on the coordinate grid is then represented by functional derivatives

n

d
9 = Zdn(x) dx” — Zdn(an)éi’z(xm —xk), (35)

where d,(x) is a coefficient and 653(%,, — x;) is analytically given by

5mmrwm—[(%)3m@—mﬂr% (36)

Here 0,,(x — x;) is a collective symbol for the right-hand sides of Egs. (19)—(22).

Note that the differentiation matrix in Eq. (35) is in general banded. This gives rise to great advantage in
large scale computations. Moveover, the DSC kernels are translationally invariant in the computational
domain. Therefore, it is very simple to implement. Extension to higher dimensions can be realized by
tensorial products. We refer expression (36) and its higher dimensional generalizations as DSC matrices.

Although many excellent DSC kernels are constructed for numerical computations, we focus on the
following discretized form of the regularized Shannon’s wavelet kernel
5o e vy SDEG )

T ( /) %(X _ x/)

to illustrate the algorithm and its application to high frequency vibration analysis. Nevertheless, various
other DSC kernels can be similarly employed (Wei, 1999a). The performance of a few DSC kernels for fluid
dynamic computations and structural analysis was compared in Wei (2001a).

For generality and simplicity, the following dimensionless parameters are introduced for a rectangular
plate

exp(—(x —x;)’/(20%)) (37)

X y w a 5 [ph
X=—, Y=, W=—; Jl=-; Q= —. 38
a? b? a7 b? wa D ( )

In terms of Eq. (38), the governing differential equation for vibration of plate (i.e., Eq. (2)) can be expressed
in the dimensionless form as

otw otw otw
27 2

X o T o

Consider a uniform grid having

0:X0<X1<"'<XNX=1

= Q'W. (39)

and

0=Yy<¥<--<Yy,=L



74 Y.B. Zhao et al. | International Journal of Solids and Structures 39 (2002) 65-88

To formulate the eigenvalue problem, we introduce a column vector W as
W = (Wog, s Worys Wiy s Way ) (40)

with (Ny + 1)(Ny + 1) entries W;; = W(X,,Y;) (i=0,1,...,Ny; j=0,1,...,Ny).
Let us define the (N, + 1) x (N, + 1) differentiation matrices D} (¢ = X,Y; n=1,2,...), with their ele-
ments given by

D] =ota—a) (i=0...N). (41)

where J, 4(g; — ¢;) is obtained from the regularized Shannon’s wavelet kernel (37). The differentiation in
Eq. (41) can be analytically carried out

n d\" .
ia-0)=|(5) dla—a)| =ci )
9=qi
where, for a uniform grid spacing, m = (¢; — g;)/4. Here the matrix is banded to i —j=m = —-M,...,
0,...,M. Therefore, in the matrix notation, the governing eigenvalue equation (39) is given by
(D} ® Iy +2°Dy @ D} + A'Iy @ D)) W = @°W, (43)

where 1, is the (N, + 1)? unit matrix and ® denotes the tensorial product. Eigenvalues can be evaluated
from Eq. (43) by using a standard solver. However, appropriate boundary conditions need to be imple-
mented before the eigenvalues can be obtained. This is described below.

We first note that boundary condition W =0 is easily specified at the edge. To implement other
boundary conditions, we assume, for a function f, the following relation between the inner nodes and the
outer nodes on the left boundary

fXo0) (Za;,x,z) — f(X0)], (44)

where coefficients @/, (m=1,...,M,j=0,1,...,J) are to be determined by the boundary conditions. For
the two types of boundary conditions described earlier, we only need to consider the zeroth order term in
the power of X/. Therefore we set @’ = a,, and, after rearrangement, obtain

f(Xfm) :a)nf(Xm)+(l _am)f(XO)a m = 1727--~7M~ (45)
According to Eq. (42), the first and the second derivatives of f on the boundary are approximated by

= > S (46)
C(l) - Z(l _am)crln f( ) Z(l - am)C f( )
m=1 m=1
and
"Xo)= Y Cof(X,) = C2+Z (1= a,)Cp | f(Xo) + Y _(1+an)Cpf (Xn), (47)
m=—M m=1
respectively.

For simply supported edges, the boundary conditions may be reduced to

S(X) =0, f"(X)=0. (48)
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These are satisfied by choosing a,, = —1,m = 1,2, ..., M. This is the so-called antisymmetric extension.
For clamped edges, the boundary conditions require
f(X) =0, f'(X)=0. (49)
These are satisfied by a,, = 1,m = 1,2,... M. This is the symmetric extension.

2.4. The Levy method

In the Levy method, a rectangular plate is assumed to be simply supported on the two opposite edges
parallel to the x-axis. The other two edges may take any combination of edge conditions. The displacement
function for the plate may be expressed as

w(x,y) = sin (?y)Z(x), (50)

where m is the number of half waves of the vibration mode in the y-direction. Eq. (50) satisfies the boundary
conditions for the two simply supported edges at y = 0 and b.

In view of Egs. (50) and (2), a homogeneous differential equation system for the plate can be derived as
follows

p) _Hy — 0, (51)
where
Z
y— ?2 (52)
703)

and the superscript denotes differentiation with respect to x. Here, H is a 4 x 4 matrix and its non-zero
elements are given by

Hyy = Hy; = Hy =1,

Hy = plguz - (%)4, (53)
o =2("2.

The procedure for solving Eq. (51) has been detailed by Xiang et al. (1996) and the solution of Eq. (51) can
be expressed as

¥ = exp(Hx)c, (54)

where exp(Hx) is a general solution matrix of Eq. (51); ¢ is a four-component constant column vectors,
which can be determined by the boundary conditions of the plate along the two edges parallel to the y-axis.

In view of Eq. (54), a homogeneous system of equations can be derived after considering the boundary
conditions of the plate (Xiang et al., 1996):

Ke = 0, (55)

where K is a 4 x 4 matrix. The vibration frequency w is evaluated by setting the determinant of K to zero.
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Fig. 1. Cases 1-6 of square plates with different edge supports.

3. Results and discussion

The application of the DSC method to high frequency vibration analysis is demonstrated in this section
through extensive numerical studies on vibration of square plates. Fig. 1 depicts six distinct boundary
conditions which are obtained by a combination of simply supported and clamped edges. The Poisson ratio
is taken as 0.3 when needed. Frequency parameters are computed for all the six cases by using the DSC
algorithm. Case 1 is analytically solvable and its non-trivial frequency parameters are explicitly reported as

%:nf—i—ni (ne,my, =1,2,...), (56)
where n, and n, are the number of half waves of the solution in the x- and y-directions, respectively. For
other cases, no analytical solution is explicitly available. However, for Cases 2 and 3, the Levy approach is
readily available to give an exact solution. As it is well-known that such an exact solution can be arbitrarily
accurate. To test the reliability of the present Levy code, the complete set of the first 7755 modes for Case 1
have been computed against the analytical solution. Our Levy results are indeed reliable and arbitrarily
accurate. As such, the Levy method is employed to provide exact solutions for Cases 2 and 3. Such so-
lutions are utilized for a cross-validation of the DSC results.

3.1. Convergence and comparison studies

3.1.1. Convergence and error analysis of Case 1

To verify the validity and accuracy of the proposed DSC approach, convergence and comparison studies
are first carried out for a simply supported square plate (Case 1). DSC calculations are performed on a
number of grids, ranging from 11% to 1012 points. The convergence study of the DSC results are sum-
marized in Table 1. Both the DSC results and analytical ones are ordered according to their magnitudes.
When the DSC grid is 312, the first 100 modes are firmly converged. Such a result is consistent with a
previous study (Wei, 1999c) where an 11 significant-figure accuracy was achieved by using both the regu-
larized Shannon kernel and the regularized Dirichlet kernel with a grid of 33% points. With a grid of 412,
the first 500 modes have converged to four significant figures. An accuracy of five significant figures is
reached for the first 1000 modes at the grid of 612 points and similar accuracy is obtained for the first 2000
modes at the grid of 912 points. It is noted that p-version FEM of Bardell (1991) can only be used for
computing the first 390 modes and the best HFEM (Langley and Bardell, 1998) predicts only up to about



Table 1
Convergence and comparison of the frequency parameters for a SSSS square plate

Mode Mesh size Analytical
number 212 312 41 512 612 712 812 912 1012 solution
1 1.9810 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2

10 17.1561 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000 17
50 80.5695 73.0089 73.0000 73.0000 73.0000 73.0000 73.0000 73.0000 73.0000 73.0000 73
100 - 145.0328 145.0000 145.0000 145.0000 145.0000 145.0000 145.0000 145.0000 145.0000 145
300 - 444.4968 408.9885 405.0003 405.0000 405.0000 405.0000 405.0000 405.0000 405.0000 405
500 - - 699.8320 673.0794 673.0008 673.0000 673.0000 673.0000 673.0000 673.0000 673
700 - - 1002.1186 933.0693 928.0721 928.0016 928.0001 928.0000 928.0000 928.0000 928
1000 — - - 1379.4256 1322.6174 1314.0682 1314.0027 1314.0002 1314.0000 1314.0000 1314
1500 - - - 2812.8155 2050.0637  1974.4049  1962.9583  1962.0073  1962.0006  1962.0001 1962
2000 - - - - 2777.4345 2685.9807  2623.5894  2609.5380  2609.0480 2609.0053 2609
2500 - - - - - 34343055  3309.7592  3272.2801  3256.8198  3253.4827 3253
3000 - - - - - 4238.8166 40729801  3949.2765  3899.3705  3893.6414 3893
3500 - - - - - - 4789.3601 4663.7991 4573.5879  4545.3831 4538
4000 - - - - — — 5542.1399 5422.1877 5256.1279 5205.5699 5188
4500 - - - - - - 7168.4286  6153.4761  6003.9363  5873.3290 5825
5000 - - - - - - - 6788.8985  6756.1822  6574.9959 6466
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Fig. 2. Comparison of DSC and analytical frequency parameters and their relative errors versus the mode numbers for an SSSS square
plate (Case 1).

the 850th mode for this case, due to the numerical instability of their matrices. Obviously, the DSC results
are remarkable and the best ever attained for this problem.

It is interesting to explore the limit of the DSC algorithm for the prediction of high frequency vibration.
To study such a problem, we plotted in Fig. 2 the DSC results against a subset of the analytical solution,
generated by setting 1 <7, <99, 1 <n, <99. Such a subset is chosen because the DSC grid of 101 points in
each dimension supports at most 99 half waves due to the simply supported or clamped edges. For the
analytical results, the frequency parameter scales essentially linear with the mode number when the fre-
quency parameter is smaller than 10,001. This value corresponds to n, = 100, n, = 1 and is the first missing
value due to the present restriction to the subset. The corresponding mode number is 7755 as marked in
Fig. 2. The frequency parameter increases dramatically as the mode number exceeds the critic point. This is
because more and more modes are missing when using Eq. (56) associated with the limit n, <99, n, <99.
The DSC results compare extremely well with the analytical results up to the frequency parameter of 4490,
which corresponds to n, = 67, n, = 1. Theoretically, no numerical method can beat the Nyquist frequency
limit (n/A) = mn, without incurring aliasing errors. Such a frequency limit corresponds to about two in-
ternal grid points per wavelength, which support two local extrema. The DSC algorithm is accurate up to
five significant figures if there are four internal grid points per wavelength, i.e., all modes given by n, < 50,
n, <50 in the present computation using a grid of 1012 points. If the grid is reduced to three points per
wavelength, i.e., all modes given by n, < 67, n, < 67, the DSC results are still accurate to three significant
figures, which corresponds to less than 1% of relative errors. Such a result is very reliable for the purpose of
most engineering designs. The mode, corresponding to n, = 67, n, = 1, is mode 3452 and is also marked in
Fig. 2. Although after mode 3452 the DSC errors are getting larger, as seen from Fig. 2 due to considerable
aliasing errors, the largest DSC error is less than 6% before the critical mode 7755. After the critical mode
7755, the restricted analytical frequency parameters start to miss modes. Even in this after critical region,
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the relative DSC errors are still less than 7%. Certainly, neither the restricted analytical results, nor the DSC
results, are reliable after the critical mode.

Fig. 3(a) presents a contour plot of the modal shape for the 5002nd mode. This modal shape is plotted on
a data size of 4012, which is generated from the original numerical data by an interpolation using the same

(@)

1

0.5

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. The 5002nd mode of Case 1: (a) contour plot; (b) side view along y-axis; (c) side view along x-axis.
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DSC algorithm as the interpolating kernel. The numerical error of frequency parameter for the plotted
mode is 1.7%. The side view of this mode is given in Fig. 3(b) and (c). It is seen that the modal shape is
extremely regular. There is no visible numerical errors as those in Fig. 10 for the 850th mode given by Beslin
and Nicolas (1997). In fact, all the first 4518 DSC modes have less than 1% numerical errors and their
modal shapes do not shown any visible irregularity.

3.1.2. Convergence studies of Cases 3 and 5

Having built up our confidence with the DSC approach for the four-edge simply supported plates, it is
necessary to further test the reliability level of the DSC high frequency prediction for other support con-
ditions. To this end, we choose Cases 3 and 5 as our next test examples. Case 3 admits the Levy solution,
and thus has an exact solution, which provides another objective test for the proposed DSC approach. It is
also important to examine the behavior of the DSC algorithm for a class of real vibration problems that are
not analytical solvable. Therefore, Case 5 is selected for the convergence studies.

The convergence studies for Cases 3 and 5 are pursued with a number of DSC grids, ranging from 112 to
1012 points. We have checked the speed of convergence for the first few thousand modes. These results are
listed in Tables 2 and 3 for Cases 3 and 5, respectively. Obviously, these DSC results converge to the Levy
solution for Case 3. The relative errors of DSC results against the Levy solution is plotted in Fig. 4. As seen
from Table 2, the first 100 modes have converged at the grid of 31? points. The degree of convergence in
these modes is not as firm as that in Case 1 for the same level of computation. The first 500 modes converge
to less than 0.1% relative errors at the grid of 512 points. Like in Case 1, it takes a grid as large as 612 points
to obtain a converged results for the first 1000 modes with relative errors less than 0.3%. Remarkably, the
relative errors of the first 2000 modes are less than 0.02% at the DSC grid of 912 points. At the final grid of
1012 points, the relative errors of first 2500 and 3000 modes are less than 0.2% and 0.3%, respectively. In
fact, the relative errors for the first 4000 and 5000 modes are less than 0.7% and 2%, respectively on this
grid. To the left of mode 3500, the DSC results for Case 1 are more accurate than those for Case 3.
However, the error distribution in Cases 1 and 3 are extremely similar to each other to the right of mode
3500. For example, the maximum relative error is less than 6% for all modes to the left of mode 7755. Such
a result indicates that the solution of the DSC algorithm is very reliable for the first 40% modes computed
and is quite reliable for the modes filling between the first 40-50% (within 2% errors). This can be seen by
examining the modal shape of Case 3, as depicted in Fig. 5. Unlike the mode in Fig. 3, this mode has many
half waves in one direction, but has fewer half waves in the other direction. However, the mode is extremely
regular and no visible error can be seen. The DSC results become less reliable, but are still useful for the
modes filling between the first 50-75%. Although the last 25% modes are unreliable for being used
quantitatively. However, the tendency of the DSC results for that section is still reasonable.

The convergence pattern of Case 5 is almost identical to that of Case 3. This can be easily confirmed by a
comparison of the speed of convergence in Tables 2 and 3. For example, for mode 2500 of Case 3, the
relative errors at grids of 612, 712, 812, 912, with respect to the result obtained by the grid of 101? are:
5.6772%, 2.3767%, 0.2928%, and 0.0487%. The corresponding errors of Case 5 are 5.6638%, 2.2233%,
0.5152%, and 0.0304%. Such a great similarity between the DSC results of Cases 3 and 5 supports our
general discussion about the reliability of the DSC algorithm given in the last paragraph.

3.2. Case studies

The convergence and comparison studies in previous subsection have confirmed the validity and ac-
curacy of the DSC algorithm for the high frequency analysis of square plates with simply supported edges
and clamped edges and their combinations. The purpose of the present subsection is to report more detailed
frequency parameters which are unavailable in any existing literature, due to the lack of stable and reliable



Table 2
Convergence and comparison of the frequency parameters for a CSCS square plate
Mode Mesh size Levy’s so-
number 212 312 4 512 612 712 812 912 1012 lution -
1 2.9405 2.9338 2.9334 2.9334 2.9334 2.9333 2.9333 2.9333 2.9333 2.9333 2.9333
10 20.4944 20.2610 20.2494 20.2467 20.2459 20.2455 20.2454 20.2453 20.2452 20.2451 20.2450
50 88.7431 77.0207 76.9206 76.8957 76.8875 76.8838 76.8819 76.8809 76.8802 76.8798 76.8786
100 - 149.9107 148.0682 148.0240 148.0086 148.0014 147.9977 147.9956 147.9942 147.9934 147.9911
300 - 457.9526 421.7334 416.0358 415.8761 415.7992 415.7578 415.7337 415.7187 415.7090 415.6817
500 - - 725.3513 681.4443 680.1673 680.0382 679.7974 679.6641 679.6442 679.6311 679.5931
700 - - 1018.5092 957.3923 944.5066 944.2306 944.1605 944.1198 944.0937 944.0762 944.0245
1000 - — - 1412.4055 1346.9832 1337.0680 1335.0782 1334.6971 1334.4611 1334.3067 1333.8679
1500 - - - 2848.4010  2080.5595  2005.9067  1991.3757  1987.4015  1987.1079  1986.9106  1986.3091
2000 - - - - 2814.2936 2728.1499 2650.4802 2641.1468 2638.0373 2637.7231 2637.6402
2500 - - - - - 3472.1971  3363.7538  3295.2845  3287.2640  3285.6637  3283.0935
3000 - - - - - 4275.8963  4110.6715  3985.4031  3941.6742  3930.6642  3926.1786
3500 - - - - - - 4822.2977 4717.7817 4610.3545 4585.8606 4572.0996
4000 - - - - — - 5574.0580 5477.6402 5311.8317 5245.0007 5220.45308
4500 - - - - - - 7220.1386  6198.9577  6048.5916  5925.5958  5867.86558
5000 - - - - - - - 6828.4774 68143333  6633.3643  6504.21895
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Table 3
Convergence of frequency parameters for a CCCS square plate

Mode Mesh size Analytical
number -y 212 312 4 512 612 712 812 912 1012 solution
1 3.2388 3.2252 3.2248 3.2247 3.2247 3.2247 3.2247 3.2247 3.2247 3.2247 NA

10 21.5405 21.2317 21.2152 21.2114 21.2102 21.2097 21.2094 21.2093 21.2092 21.2091 NA

50 90.8605 79.8541 79.6678 79.6234 79.6089 79.6024 79.5991 79.5972 79.5961 79.5953 NA

100 - 154.3896 153.1182 152.9901 152.9487 152.9300 152.9203 152.9148 1529115 152.9093 NA

300 - 460.4169 427.0778 422.1673 421.6941 421.5009 421.4042 421.3502 421.3177 421.2969 NA

500 - - 730.8059 689.9917 689.0260 688.6682 688.4308 688.3726 688.3056 688.2621  NA
700 - - 1030.4138 965.2237 953.6379 952.2376 951.7077 951.4211 951.2489 951.1388 NA
1000 - - - 1421.4820 1357.4599 1346.1118 1345.2574 1344.9086 1344.7090 1344.5529 NA
1500 - - - 2862.3984  2096.4358 2019.4815 2002.7030 1999.0437 1997.9926 1997.4696  NA
2000 - - - - 2823.3398 2747.1305 2670.5988 2652.5601 2649.1251 2648.3326 NA
2500 - - - - - 3489.9133 3376.2781 3319.8629 3303.8514 3302.8475 NA
3000 - - - - - 4296.6772  4139.7335  4011.2886 3956.8308 3946.0218 NA
3500 - - - - - - 4840.4963 4740.6079  4634.5845  4599.1441 NA
4000 - - - - - - 5598.1785 5501.8295 5345.5062 5268.6322 NA
4500 - - - - - - 7247.8570  6218.7360 6077.9785 5949.7340  NA
5000 - - - - - - - 6844.1909 6846.4239 6661.4364 NA
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Fig. 4. Comparison of DSC and analytical frequency parameters and their relative errors versus the mode numbers for a CSCS square

plate (Case 3).

Fig. 5. The 2000th mode of Case 3: (a) contour plot; (b) side view along y-axis; (c) side view along x-axis.
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Fig. 5 (continued)

numerical methods. The present study focuses on the last five cases in Fig. 1, since the analytical solution is
available for Case 1.

The Levy solution, the DSC solution, and the relative error of Case 2 are plotted in Fig. 6. Obviously, the
plot confirms the consistence of the DSC algorithm for all the three analytically solvable cases as both the
magnitude and trend of the error are essentially identical to those of the DSC results for Case 3. Since
the first 5000 DSC modes computed by using the grid of 101? points have less than 2% relative errors, it is
reasonable to recommend that the DSC algorithm prediction associated with proper plate theories can be
used to analyze high frequency vibration of plates and the results can be used in most engineering designs.
What is encouraged is the fact that, in case a better precision is required, it is very robust to fulfill such a
requirement by increasing the number of the DSC grid points.

In fact, the Levy solutions for high frequency vibration of Cases 2 and 3 have not been reported pre-
viously, and thus they are valuable for objectively testing new potential numerical methods for high fre-
quency analysis. The DSC results for Cases 4-6 are of benchmark quality for their first 5000 modes. It is
believed that these DSC results are valuable for numerical test of other potential methods. For these
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plate (Case 2).

reasons, we have summarized the DSC results of Cases 2-5 and the Levy solutions of Cases 2 and 3, up to
mode 5000, in Table 4. The detailed half wave information for the Levy solution is also given in Table 4.

4. Conclusion

High frequency vibration prediction is a challenging task in structural analysis and optimization. The
lack of stable and reliable numerical methods for the prediction has been a long standing problem due to
numerical round-off in conventional numerical approaches. There are certain problems of pressing practical
concern for which it is not possible at present to make a reliable design prediction of high frequency
vibration levels, as pointed out by Langley and Bardell (1998) recently. The present work introduces a
novel numerical approach, the DSC algorithm, for the prediction of high frequency vibrations. The DSC
algorithm has its theoretical foundation in mathematical distribution and wavelet analysis (Wei, 1999a,
2000a,b).

Rectangular plates having different combination of simply supported and clamped edges are studied in
the present work. The computational philosophy of the DSC algorithm is briefly discussed and the for-
mulation of the algorithm for plate analysis is given. Convergence studies are carried out for three selected
square plates of various combinations of simply supported and clamped edges (SSSS, SSCS and CCCS).
Numerical results are validated by the analytical solution for an SSSS plate and by the Levy solutions for
SSCS and CSCS plates. The results showed that the DSC method is remarkably accurate for the SSSS
plate. With a reasonable grid of 1012 points, the first 2000 modes are accurate up to six decimal with relative
errors less than 0.002%! Such results are firmly reliable for all practical purposes. In fact, the first 5000
modes, i.e., half of the modes computed by the DSC algorithm when the grid is 1012, have less than 2%
relative errors. What is of particular importance is that such a level of accuracy is also attained for SSCS
and CSCS plates, as clearly verified by using the Levy method. Furthermore, the DSC results of the first
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Table 4
Benchmark results for a wide range of frequency parameters for SCCS, CCCS, CCCC, SSCS and CSCS square plates
Mode num- SCCS CCCS CCcCcC SSCS CSCS
ber m, n  Levy DSC m, n  Levy DSC
1 2.7412 3.2247 3.6461 1,1 2.3959 2.3959 1,1 2.9333 2.9333
2 6.1338 6.4168 7.4364 2,1 5.2357 5.2357 2,1 5.5466 5.5466
3 6.1589 7.2015 7.4364 1,2 5.9421 5.9421 1,2 7.0243 7.0243
4 9.4063 10.2124 10.9647 2,2 8.7272 8.7273 2,2 9.5835 9.5835
5 11.6070 11.7895 13.3320 3,1 10.1594 10.1595 3,1 10.3567 10.3567
6 11.6219 13.2074 13.3952 1,3 11.4724 11.4724 1,3 13.0801 13.0802
7 14.7707 15.3900 16.7182 3,2 13.5559 13.5559 3,2 14.2057 14.2057
8 14.8011 16.1584 16.7182 2,3 14.2706 14.2707 2,3 15.6821 15.6821
9 19.0951 19.2275 21.3305 4,1 17.1191 17.1191 4,1 17.2597 17.2597
10 19.1044 21.2091 21.3305 1,4 18.9913 18.9914 3,3 20.2450 20.2451
20 34.7391 36.2075 37.6257 4, 4 33.3929 33.3930 4, 4 34.9090 34.9093
30 48.3112 51.0975 51.7390 3,6 47.6857 47.6860 7,1 50.1407 50.1407
40 64.7455 66.3704 68.6682 6,5 62.5471 62.5475 3,7 64.5845 64.5857
50 77.2407 79.5953 81.6002 7,5 75.3929 75.3934 7,5 76.8786 76.8798
60 89.6319 94.1822 94.3854 2,9 89.4308 89.4321 1,9 91.1837 91.1863
70 106.0772 108.0343 111.2824 6, 8 103.1293 103.1308 4,9 105.3301 05.3335
80 121.2973 122.0231 126.7117 10, 4 116.6969 116.6975 7,8 118.9712 118.9749
90 133.4091 136.1961 138.9640 2,11 130.4527 130.4554 5,10 133.9991 134.0046
100 150.7732 152.9093 156.6604 11, 5 146.9699 146.9710 11, 5 147.9911 147.9934
200 282.0683 287.3487 290.2535 14,9 279.2874 279.2935 14,9 281.6552 281.6680
300 414.8046 421.2969 424.7275 19, 7 411.1180 411.1238 17,11 415.6817 415.7090
400 549.6658 556.3167 561.4654 2,23 544.5081 544.5547 22,8 550.5552 550.5756
500 685.6417 688.2621 698.4053 23, 12 675.5755 675.6012 24, 10 679.5930 679.6311
600 813.5504 820.4249 827.2526 20, 20 806.7253 806.7981 21, 19 814.1774 814.3163
700 942.9947 951.1388 958.1161 26, 16 935.9042 935.9640 29, 10 944.0245 944.0762
800 1076.4061  1082.8963  1092.9462 24, 22 1067.0322  1067.1490 24, 22 1074.1757  1074.4087
900 1205.8808  1212.4433  1222.8903 32,13 11952499 11953017 20, 28 1206.1283  1206.4169
1000 1331.9225  1344.5529  1349.9783 35,10 1326.2558  1326.2901 23, 28 1333.8679  1334.3067
1100 1468.7253  1479.1107  1487.6199 17, 34 1459.8910  1460.1965 22, 31 1469.5310  1469.8863
1200 1595.3538  1606.5596  1614.9018 26, 30 1586.8300  1587.1250 26, 30 1597.7871  1598.3890
1300 17209126  1735.0494  1741.9705 35, 22 1714.4414  1714.6329 2,41 1726.1888  1727.1385
1400 1865.3741  1870.1191  1886.9367 39, 18 1848.4722  1848.6140 23, 36 1854.5370  1855.6258
1500 1984.0690  1997.4696  2006.7157 4, 44 1973.9483  1974.5730 36, 26 1986.3091  1986.9106
1600 2119.8041  2130.4219  2142.7585 45,9 2106.8029  2106.8461 22, 40 2118.3119  2119.5774
1700 2248.5308  2259.6464  2272.2598 38, 28 22357610  2236.1400 47,6 2245.6948  2246.3819
1800 2373.6597  2388.1688  2398.4762 15, 46 2362.6586  2363.5258 11, 47 2375.7094  2377.1979
1900 2506.8575  2522.3544  2531.8733 13,48 2496.0219  2497.0155 50, 2 2504.0730  2505.0099
2000 2635.1154  2648.3326  2661.3715 29, 42 2621.6734  2622.1712 51,6 2637.6402  2637.7231
2100 2767.5094  2778.7656  2794.4360 38, 36 2751.6957  2752.4151 36, 38 2766.3235  2767.8171
2200 2900.0786  2912.6960  2927.3745 19, 50 2884.0555  2885.3089 51,17 2894.9402  2895.3479
2300 3021.5580  3036.1981  3050.2438 53, 14 3006.6281  3007.8504 43, 34 3024.8493  3026.2351
2400 3158.9914  3170.2064  3188.1332 56, 2 3140.0323  3140.3602 20, 52 31519987  3152.6063
2500 3283.9973  3302.8475  3314.7279 48, 31 3272.8093  3273.4598 29, 49 3283.0935  3285.6637
2600 3415.1663  3428.3149  3445.5272 38, 44 3395.8811  3397.1408 48, 33 3410.4871  3412.0085
2700 3540.3785  3562.0715  3571.7963 4,59 3526.4769  3529.8645 57,17 3542.4532  3547.0979
2800 3670.2740  3684.9800  3703.3249 57, 20 3652.0248  3652.7695 32, 51 3666.9793  3671.0169
2900 3802.2018  3815.4974  3834.5337 57,23 3781.9411  3782.7802 12, 60 3802.7913  3806.9741
3000 3927.0180  3946.0218  3960.6301 20, 59 3908.6293  3912.2589 62,9 3926.1786  3930.6642
3100 4067.2403  4079.5244  4101.1149 56, 30 4042.5329  4044.3171 20, 60 4056.4468  4062.7810
3200 4187.1102  4205.7037  4223.7552 56, 32 4167.3359  4170.6384 35,54  4184.9520  4190.8221
3300 4319.3183  4336.0908  4354.6685 63, 18 4295.2514  4300.2613 5, 65 4315.0084  4324.2689
3400 4454.3228  4469.8514  4490.3914 13, 65 4425.7692 44319106 40, 53 4449.7364  4455.4057
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Table 4 (continued)

Mode num- SCCS CCCS CCcCC SSCS CSCS

ber m, n Levy DSC m, n  Levy DSC
3500 4581.5446  4599.1441  4618.5821 67, 8 4553.4296  4559.1715 4,67  4572.0996  4585.8606
3600 4715.8308  4733.9468  4753.5169 36, 58 4683.8663  4693.7048 26, 63 4702.4205  4714.7547
3700 4847.3230  4869.4905  4887.7473 61, 33 4817.2403  4830.0443 64,27  4834.6587  4844.1591
3800 4981.7767  4995.6789  5023.4291 57, 41 4941.1539  4956.7979 69, 14  4959.5385  4978.4398
3900 5118.5513  5134.7453  5159.9795 45,55 5070.3414  5093.7346 11, 70 5090.1831  5110.3664
4000 5248.5240  5268.6322  5288.5648 68, 24 5203.6459  5227.1931 72, 6 5220.4531  5245.0007
4100 5370.8915  5399.8919  5417.4298 71,17 5331.7982  5354.7743 73, 4 5345.1989  5379.9032
4200 5507.1080  5533.3278  5553.5836 48, 56 5460.2679  5488.9994 68, 29 5475.4666  5515.5912
4300 5648.4529  5676.2094  5696.7488 73, 16 5586.5549  5627.2018 7, 74 5598.8349  5656.3552
4400 5791.3028  5811.2616  5838.2243 72,23 5716.1890  5762.7119 73, 20 5733.8276  5785.6935
4500 5919.9068  5949.7340  5967.0847 22,73 5847.6306  5903.4966 13,75 5867.8656  5925.5958
4600 6067.8100  6090.7110  6114.4199 72, 28 5972.6389  6034.1115 75,19 5990.2583  6064.0798
4700 6204.0308  6230.8582  6253.3629 78, 4 6100.0926  6180.9466 78, 6 6120.4181  6207.1339
4800 6349.6035  6370.5441  6401.9941 43, 66 6231.7122  6315.7984 79, 3 6250.1034  6340.5025
4900 6489.2809  6516.5479  6539.5444 62, 50 6358.6896  6464.9057 78, 17 6376.2990  6484.6309
5000 6632.9745  6661.4364  6695.0808 72, 36 6487.4019  6601.9842 31, 74 6504.2190  6633.3643

Here, m and n are the number of half waves in the y- and x-directions, respectively.

75% modes are all subject to less than 6% relative errors, which might not be very reliable, but might be still
useful for predicting the trend of high frequency vibrations. Moreover, the DSC algorithm seems has no
problem of numerical instability. Therefore, one can easily enlarge the DSC grid to achieve better con-
vergence in a practical DSC prediction.

The frequency parameters of both the Levy method and the DSC algorithm are tabulated for SSCS and
CSCS plates up to the first 5000 modes. The DSC algorithm is also used to provide frequency parameters
for plates of SCCS, CCCS and CCCC edge supports. These results may serve as benchmark solutions for
researchers to check their potential numerical methods for the analysis of high frequency vibrations.

Although this paper presents only high frequency vibration results for square plates with a few edge
conditions, the DSC method is readily applied to rectangular plates with transversely supported edges,
mixed support edges and with complex internal supports. The use of the method for the vibration analysis
of plates with irregular geometries is under consideration. Moreover, many other DSC kernels, such as the
regularized Dirichlet and Lagrange kernels, can be selected to give the high frequency analysis of the same
level of confidence.
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